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Application of the Direct Configuration Interaction Method 
to the Ground State of 02 

Ian Ferguson and Nicholas C. Handy 

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England 

The Direct Configuration Interaction Method, originally due to Roos [1], has 
been implemented using the method of Lucchese and Schaefer [2], for open 
shell systems. As in the closed-shell case, the method is very efficient. Results 
are presented for a part of the potential energy curve of the 02 aZ~ ground 
state electronic configuration, together with several properties. 
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1. Introduction 

It is generally recoguised [3] that the Direct Configuration Interaction Method, 
introduced by Roos [4] for closed-shell systems which have one dominant con- 
figuration, is a very efficient CI procedure. In this approach, the CI wavefunction 
consists of spin and symmetry adapted configuration state functions, which are 
obtained by making single and double excitations from a dominant configuration, 
the "root  function", Oo. 

all occupied and] (al l  v i r tua l  and] 
semi-occupied J ~semi-occupied/ 

i~ = CO(~ 0 .q_ ~ ~a C~af~ 

al l  occupied and] / a l l  v i r tua l  and] 
semi-occupied J ksemi-oceupledY 

(1) 

O? and �9 -~.~ denote single and double replacement configurations where i, j refer to ~3 

all singly and doubly occupied orbitals in the root function and a, b to all singly 
occupied and virtual orbitals. 
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The method is especially suitable for calculations involving large CI expansions. 
To date, various groups of workers [1, 2, 3, 5] have been using the method for 
closed-shell systems with one dominant root function. 

Fast convergence iterative methods [6-8] adopted to calculate the lowest roots of a 
large CI matrix depend upon constructing the vector ~, where 

= H . c  (2) 

and c is the trial vector, either approximating to the exact eigensolutions of 
t lc  = Ec, or one of a series (e.g. the Krylov series) spanning the space of the exact 
eigensolution. 

Roos [1] devised a direct CI approach which does not necessitate the construction 
of the matrix elements, one at a time, as in conventional CI methods [9, 10] but 
proceeds directly to the solution of the secular equations from a list of one- and 
two-electron integrals by construction of the vector in the form 

(3) 

where (pq I rs) represents the usual form of a two-electron integral over molecular 
orbitals. Similar equations involve one-electron integrals, single replacement func- 
tions and the root function @0 [4]. A,~ is a coupling matrix element analogous to 
projective reduction coefficients in Bonded Function CI for the configuration state 

- -  c a  functions @,(-  qb~b) and @~(= @kl). 

In closed-shell systems there are only five distinct types of spin configuration and 
thus the extent of the coupling matrix table A is small. Extension to open-shell 
systems increases the number of spin configuration types enormously. Lucchese and 
Schaefer [2] have recently given a method for overcoming this problem. 

2. The Direct CI Method for Open Shell Systems 

Lucchese and Schaefer apply the method to triplet states, where the root function 
qbo is of the form 

qb o = d[r162162 .r162162 (4) 

Only those single and double replacements of t90 which have nonzero Hamiltonian 
matrix elements with @o (i.e. those present in the first order interaction subspace) 
are included in the CI expansion. This restriction shortens the configuration list, 
typically by a factor of two (or more for large scale systems) at the expense of a 
negligible loss of correlation energy in most cases (usually of the order of 0.2~) 
[11]. The list of all these configurations is shown in Table IV of Ref. [2]. There are 
21 distinct types of configuration present in the case of triplet spin states. 

A difference between our formulation and the one presented by these authors is 
that we only found it necessary to adopt two one-electron matrices, corresponding 
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to Fock-type operators over ~ and/3 space-spin orbitals: 

all  doubly] /'all s~ngly] 
occupied / \ occupied/ 

f(1'(i) = h(i) + ~ (2J,(i) - I(:(i)) + ~ (J,(i) - l~,(i)) 
1 r 

alE doubly] / a l l  s ingly]  
occupied / \ occupied ] 

/(2>(i) = [~(i) + ~. (2::(i) - ~:(i)) + ~. (fir(i)) 
1 r 

(s) 

so that in the sum over h in Tables I and III of Ref. [2] h = i and 2 only. This 
obviously reduces computational time to a significant degree, and equally im- 
portantly, may decrease storage requirement for the coupling matrix elements in 
open-shell calculations. 

The coupling matrix elements were determined, as suggested by these authors, by 
a "polished brute force" method involving a model calculation on a ten-electron 
system with five virtual orbitals. Each configuration state function is decomposed 
in terms of its constituent Slater determinants and the matrix elements are then 
calculated in terms of the Slater-Condon rules, over the two- and one-electron 
integrals. 

There is a certain indeterminacy in the coupling matrices under some circumstances. 
This indeterminacy arises from an interdependence of various matrix elements 
within the Direct CI algorithm. An example is: 

(O~a[/ t [O~) = j l ( . ,  v, p)(ik l il ) + k l ( . ,  v, p)(ik l il ) (6) 

in which j l  and k~ are the coupling matrix elements required. Similarly 

a b  ~ c O  (r  IHlOk,) = A(~, v, p)(ac [ ik) + k3( . ,  v, p)(ai [ ck) 
(7) 

a b  ~ c b  ( r  IHlO,k) --A(., ~, p)(ac I ik) + ks(., v, p)(ai ] ck). 

Consideration of these and similar situations suggests simple rules to overcome 
these indeterminacies. Thus in the above cases the projective reduction coefficients 
k l ( . ,  v, p), J6(., v, p) and k6(., v, p) were given the value zero. 

Test calculations were performed on the triplet state of H20 using a double zeta 
basis set employed by Shavitt and Rosenberg [12] in a singlet calculation on H20 
i.e. (O: 4s 2p), (H: 2s). Our full scheme was checked by expansion of a general CI 
eigenvector c into its constituent Slater determinants. The determinant C] eigen- 
vector then input to a " C I S D "  (or UHFCI)  [4, 5] direct CI program, followed by 
reconstruction of the resulting a vector into the configuration state expansion 
terms. The eigenvector obtained by the two independent routes i.e. from the CISD 
program and from the open-shell CICS program were then compared. Other checks 
included a comparison with the values obtained using the Bonded Function CI 
[13] method, although the bonded function doubles plus singles replacement states 
expansion necessarily incorporates certain doubles outside the Hartree-Fock 
interaction subspace. The Bonded Function CI calculation was therefore only a 
check insofar as it gave a lower variational energy. 
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Finally we found that the implementation of a formula tape procedure enhanced 
both the speed and core storage characteristics of the method. Calculations in 
general ran using a fraction of Bonded Function CI disc requirement and are of the 
order of six times faster for small calculations. Hopefully, large scale calculations 
become comparatively faster for two primary reasons: a) projective reduction 
coefficients need not be computed during the "symbolic reference generation" 
stage of the CI calculation and b) datafile searching is unnecessary in forming the 
numerical matrix elements. Additional advantages of the method include: 

1. At different geometries the same symbolic reference tape may be used, making it 
similar to that of conventional CI methods except that the algorithm used to 
generate the symbolic reference is much faster by the nature of direct CI. 

2. The symbolic reference tape is much shorter than for similarly sized Bonded 
Function CI calculations due to a) lack of the additional CI configurations included 
in the Bonded Function method outside the first order Hartree-Fock interacting 
subspace, b) shift of the CI matrix diagonal element values to - H00, the energy of 
the lowest SCF configuration, hence excluding many diagonal element references 
usually included in Bonded Function CI, c) use of Fock matrix elements, rather 
than the direct construction of the CI Hamiltonian reference from two electron 
integrals exclusively (as often implemented in conventional CI approaches), due to 
the division of the Hamiltonian in the form [4] 

= + ( 8 )  

where/~.~ and I~v are the Fock and fluctional matrices respectively. 

3. The symbolic reference tape need not be "restructured" and is merely written 
and read sequentially giving terms of the form 

Ao,~ = (ij [ kl)A(tOcB (9) 

where %/~ and/~ form the symbolic reference, again reducing computation time and 
peripheral file storage requirements. 

Consideration of points 2 and 3 above indicates that not only is the generation of 
the symbolic reference much faster for direct CI but that subsequent calculations 
involving the direct CI method require less computational effort than Bonded 
Function CI calculations. Other conventional CI methods may in fact allow 
greater flexibility of selection of the configuration state functions for inclusion in 
the CI expansion than the Bonded Function CI approach. They therefore have 
the capability of producing a shorter symbolic reference than Bonded Function CI, 
but in general these methods are somewhat slower again than the latter in generating 
a formula tape. In general, it would be preferable under all circumstances, and 
especially in dealing with large scale CI expansions, to avoid the use of a symbolic 
reference. The length of a formula tape is always considerably greater than the 
integral list and becomes intractable for use on small computers without large 
amounts of disc and or tape space being available. Indeed, in our present imple- 
mentation the use of symbolic reference or use of "conventional" direct CI is 
permissible and is in general adopted for larger scale calculations or when retention 
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of a formula tape is not required. This does however require of the order of two or 
three times longer (for open-shell systems) than calculations involving a symbolic 
tape. 

During our investigations and implementation of the method, it became apparent 
that it was straightforward to extend this program to deal with other open-shell 
systems. This has now been done at Berkeley [14] and at Cambridge. Furthermore, 
implementation and inclusion of higher replacement effects is also straightforward 
for closed-shell systems and this is being done in Cambridge [15]. We believe this 
Direct CI method has much to commend it. 

3. Results for the 02 821~ State 

Sample calculations were performed using a (O: 4s2pld) contracted Gaussian 
basis set generating 3415 symmetry adapted configuration states in the direct CI 
method. The basis set employed was the standard Dunning [16] contraction of the 
Huzinaga [O: 9s5p] basis [17], plus a Dunning [2d]-(ld) contraction with an 
exponent of 2.01 [18]. 

Restricted Hartree-Fock calculations were first performed using the ATMOL3 
[19] package to obtain SCF molecular orbitals. The CI was then performed using 
all 32 molecular orbitals including all single and double replacement configurations. 

Previous calculations on the Oz molecule include those by Schaefer and Harris [20] 
using a minimal basis set to calculate a section of the potential energy curve. 
Schaefer later performed a calculation of higher accuracy [21]. More recently 
accurate first order subspace MCSCF-CI calculations on this state have been 
performed by Guberman [22]. Finally Saxon and Liu [23] performed a massive 
series of very accurate calculations on 62 valence states of 02 for various inter- 
nuclear distances, using first order MCSCF-CI wavefunctions again, but in this 
case with a more extended basis than that of Guberman. The only calculations 
which have attempted to obtain one-electron properties of interest were the series of 
calculations of Kotani et al. [24] in the 1950's using a very restricted CI expansion. 
The calculations reported here are in the middle of this range of accuracy, but we 
believe that they are of interest because they represent the implementation of a new 
method and because several property values, of which there are few theoretical 
predictions of magnitude, are given. The limited basis used and the necessity of 
adoption of a single root function should however be expected to produce in- 
accurate spectroscopic results. The properties we report are for the electric field 
gradient, q (to compare with 170 nuclear quadrupole coupling values), the electric 
quadrupole moment, t9 and the electric hexadecapole moment, qb (to compare 
with microwave spectroscopy line broadening measurements, infra-red multipole- 
induced dipole absorption spectra and birefringence measurements). Because 
property surfaces are becoming of increasing interest, we here give values for these 
properties over the range of the potential curve. Values, in atomic units (a.u.), are 
given in Table 1 for both SCF and CI wavefunctions. 
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Table 1. Potential energy surface and property surfaces (SCF and CI) for the 
02 zE~- ground state configuration (in a.u.) 

SCF values 

R/Bohr E(SCF)/Hartree q(z2)]a.u. | ~(z4)/a.u. 

1.9 -- 149.553 1.224 - 0.615 3.611 
2.0 - 149.604 1.268 - 0.468 3.539 
2.1 - 149.629 1.330 --0.321 3.613 
2.2 - 149.637 1.406 --0.174 3.821 
2.3 -- 149.632 1.488 -- 0.030 4.152 
2.4 -- 149.619 1.576 +0.111 4.593 
2.5 - 149.600 1.664 + 0.248 5.135 
2.6 - 149.576 1.750 + 0.379 5.765 
2.7 - 149.551 1.832 + 0.504 6.474 

CI values 

R/Bohr E(CI)/Hartree q(z2)/a.u. | ~(z0/a.u. 

1 . 9  - 149.861 1.192 - 0.667 3.649 
2.0 - 149.921 1.245 - 0.525 3.571 
2.1 - 149.957 1.326 - 0.388 3.731 
2.2 - 149.974 1.344 - 0.216 3.931 
2.3 - 149.978 1.410 - 0.069 4.292 
2.4 - 149.974 1.478 + 0.072 4.773 
2.5 - 149.961 1.586 +0.194 5.364 
2.6 - 149.949 1.624 + 0.334 6.009 
2.7 - 149.932 1.692 + 0.456 6.757 

I n  Table 2 values for the spectroscopic constants  obtained from a D u n h a m  analysis 

[28] of the potential  curve are presented and compared with other calculations and  

experimental  results. 

We note that  our  values for the equi l ibr ium internuclear  distance Re, and  conse- 

quent ly  Be, are in good agreement  with experiment.  The values for ~oexe and  ~e are 
in reasonable agreement. The value for ~% is predictably poor, but  its error is in 
line with other ab initio calculations of harmonic  constants  obtained from single 
plus double replacement  wavefunctions from a single root  funct ion [29]. To get 

better values a mult i - root  reference function,  or similar technique of including 
higher-order replacements, would be desirable. The values for one of the best CI  
calculation to date, a careful and sophisticated calculation by G u b e r m a n  [22], 

admit tedly using a small basis, are also included in the table. This CI  calculation, 
which involved a prel iminary M C S C F  calculation, included excitations out of m a n y  
root  functions into the first order Har t ree -Fock  interact ing subspace. Our  total  
energy is lower than  that  of G u b e r m a n ' s  because his calculation did not  freeze the 

ls  core orbitals and  in consequence our value of Re is somewhat  better. I t  is a pity 
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Table 2. Values for spectroscopic constants and other properties for the 
02 3y~- state from the CI calculations 

351 

Property Experimental This calc. (CI) Guberman ~ 

R,]I~ 1.207 b 1.214 1.222 
Bdcm- 1 1.446 b 1.430 -- 
codC m - 1 1580 b 1720 1584 
oJexdcm- 1 12.07 b 9.576 12.87 
adcm- 1 0.016 b 0.011 0.015 
q(z2)/a.u. -- 1.32 ~ -- 1.407 - 
| - 0.299 ~ - 0.077 - 

0.223 e 
0.253 ~ 

~(z4)/a.u. 2.945 ~ 4.267 - 
8,755, 8.2312 ~ 
21.242 ~ 

DdeV 5.21 b 3.24 5.20 
E(min)/Hartree - - 149.9783 - 149.8050 

a See Ref. [22]. b See Refs. [25, 26]. ~ See Ref. [27]. 
a See Ref. [30]. o See Ref. [31]. f See Refs. [32, 33]. 
g See Ref. [34]. 

Conversion Factors 
Quadrupole moment, 1 a.u. = 4.486613 x 10 -40 cm 2 
Hexadecapole moment, 1 a.u. = 1.256378 x 10 -60 cm ~ 
Electric field gradient, 1 a.u. = 9.7171 x 1021 Vm -2 

that  accurate calculations, such as those of Guberman ,  were not  extended to 
calculate interesting one-electron properties. 

The values for the electric field gradient, quadrupole  moment  and hexadecapole 

moment ,  obtained by vibrat ional  averaging, using the determined spectroscopic 

constants  from the calculated potential  energy surface, are in as good agreement as 
might  be expected with the experimentally observed values, within the restriction 

of the basis. A more accurate calculation, of  the order of that  of Saxon and  Liu 

would be required to verify the results. I t  should be noted  that  use of the observed 
spectroscopic constants for the 02 3Z~- state made a negligible difference to the 

calculated properties. Addi t ional  calculations involving variat ion of the polariza- 

t ion  exponent  by 1 0 ~  in either direction also made a negligible difference to the 
calculated property values. There is considerable room for uncertainty in the 

observed values of the mult ipole moments ,  especially the hexadecapole moment ,  as 
the values for these quanti t ies were obtained from fits to mult ipole-induced-dipole 
far infra-red absorpt ion  spectra (or microwave spectra) and induced-birefringence 

measurements.  The natural ly  small magni tude  of the quadrupole  momen t  [30, 31 ] 
makes an  accurate est imation of its value particularly difficult. The quadrupole  
moments  derived from pressure-induced far infra-red absorpt ion results are some- 
what  lower, in general, than  those obtained directly from the induced birefringence 
experiments of Buckingham et al. [30]. Admit tedly  such collision-induced data 



352 I. Ferguson and N. C. Handy 

produces values for moments which vary significantly, depending as such analyses 
do, upon the 02-02 inter-molecular potential chosen [32, 33, 34] and upon collision 
diameter values used. In consequence, the calculated values of the hexadecapole 
moment vary enormously in the range 21 • 10 -6o cm 4 to 3 x 10 -6~ cm 4, being 
highly dependent upon the quadrupole values adopted. The usual method of 
approach to account for discrepancies in the line shapes between experimental and 
theoretically predicted absorption spectra which include only the quadrupole- 
induced-dipole term is to add in the comparatively smaller contribution due to 
hexadecapole-induced-dipole effect by a procedure such as "least-squares-fit" 
[33, 34]. This approach, however, becomes unstable in this case as the quadrupole 
and hexadecapole effects are of similar magnitude owing to the size of the quad- 
rupole moment in 02. The strong dependence of the quadrupole moment upon the 
separation, evident from the property surface data, gives a large vibrational 
dependence in the quadrupole value (a first derivative of 3.03653 a.u.), indicating a 
need for careful vibrational averaging of the quadrupole moments. The electric 
field gradient calculation of Miller and Townes [27], being derived from the 
magnetic hyperfine structure of the microwave spectrum of 160170, is again prone 
to some degree of error, and so we believe that our calculated value, while agreeing 
well with that of experiment, is probably a better estimate of the true value. 

The value for the dissociation energy is very similar to that obtained by Hay [35] 
in a calculation using an equivalent basis set with conventional CI on only the 
equilibrium geometry of 02, but falls short of the best calculated values as a result 
of lacking "size consistency" over the full surface. 

In summary, these calculations demonstrate the ease of this direct CI method. The 
poor value obtained for o~e illustrates the restrictions on its application: it is not 
capable of producing a good potential energy surface over a wide range because of 
the need to include one or more additional root functions. 
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